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The dynamics of a vibro-impacting cantilever beam experiment using an impact
load cell is considered. The signal recorded from the cell produces spike train-type
data. The issues related to the analysis of such data are discussed; particularly the
sampling rate and threshold values. For vibro-impact motion of the beam, the
duration of impacts is investigated by using a time of contact measure. The
implications are discussed for vibro-impact systems mathematically modelled by
using instantaneous impact assumptions (coe$cient of restitution). Using the load
cell to measure impact forces for the beam system is also considered. Then a delay
reconstruction of the dynamics of the system by using interspike intervals is
considered. It is demonstrated how this process is e!ected by the in#uence of noise
and the data-acquision process using numerical simulations of the experimental
data. It is shown how simple periodic motions can be identi"ed by using
a probability density approach and possible future research is highlighted.
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1. INTRODUCTION

The dynamics of a steel cantilever beam subject to harmonic forcing with a motion
limiting constraint on one side is considered. For a range of values for the forcing
frequency, impacts between the beam and the constraint can occur, resulting in
vibro-impact motion of the beam. The dynamics of a vibro-impacting cantilever
beam have been studied experimentally by several authors as an example of
a simple non-linear dynamical system [1}4]. For systems which are linear away
from the constraint, such as the beam system vibrating with small amplitude
displacements, non-linearity in the system is induced by the non-smooth nature of
the impact.

In the present study, attention is focussed on the dynamics of the beam via an
experimentally recorded signal from the constraint (or impact stop). The aim is to
interpret and predict dynamical behaviour by using this information alone. The
experimental apparatus is the same as that used by Bishop et al. [4], with the
*Current address: Earthquake Engineering Research Centre, University of Bristol, Queen's
Building, University Walk, Bristol BS8 1TR, England

0022-460X/99/470243#22 $30.00/0 ( 1999 Academic Press



244 D. J. WAGG ET AL.
addition of a specially constructed impact load cell to measure the force imparted to
the stop by the beam at each contact. The load cell was constructed by using strain
gauges mounted on a thin-wall aluminium tube, such that the longitudinal
displacement of the tube is measured (as strain) and then related to the force of
impact. This technique has similarities with the sensing block method [5], for
measuring an impact force by using strain gauges mounted on a &&block''.
Measurement of impact forces has important applications in the design of machine
parts or structural components which are subject to impact loading.

Also of importance for design of engineering systems is the accurate
mathematical modelling of the global dynamics of the system. Many of the
theoretical and numerical studies of vibro-impact dynamics have been carried out
by using an instantaneous impact rule [6}10]. This impact rule takes the form of
a coe$cient of restitution rule, where the coe$cient is assumed to be a constant
value related to the ratio of velocities before and after impact. Assuming that this
change in velocity is instantaneous simpli"es the analysis of the global dynamics of
the system considerably, but in real systems the contact duration will always be of
a "nite duration. In reference [4] it was demonstrated that the use of such an
impact law in a simple mathematical model could capture all the qualitative
dynamics of the cantilever beam system. This was based on the premise that the
time of contact was &&short'' compared to the time between impacts. Thus, a second
purpose of this study was to quantify this assumption for the cantilever beam
system, therefore giving an indication of possible use for this type of model for other
similar engineering systems. In order to achieve this we de"ne a contact time
measure and consider typical values from the cantilever beam system.

The recorded experimental signal from the load cell consisted of a series of
impulsive spikes, often referred to as spike trains [11, 12]. The issues associated with
acquiring and processing this type of data such as sampling rate and spike
identi"cation by using threshold values are brie#y considered. The analysis of spike
data also has applications in the analysis of biomedical data [12]. These issues are
signi"cant when attempting to reconstruct the dynamics of a noisy (i.e.,
experimental) system by using interspike intervals [13]. The interspike interval
technique is applied to the experimental data recorded from the cantilever beam
system. Then it is explained how disturbance e!ects are introduced by the
data-acquisition process and the subsequent limitations of the interspike interval
approach.

2. EXPERIMENTAL APPARATUS

A schematic representation of the specially constructed impact load cell used for
this study is shown in Figure 1. The aim was to design a load cell capable of
detecting longitudinal impacts with forces as low as 1 N. In order to achieve this the
strain gauges were mounted on a aluminum tube with a wall thickness of 0)23 mm.
To detect a force of 1 N the gauges need to detect strain values down to
aproximately 3]10~6 upon assuming Young's modulus E, for aluminium to be
E+7)05]1010 N/m2.



Figure 1. Schematic representation of the impact load cell apparatus. Dimensions are given in
millimetres.
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The load cell is made up of three distinct parts. A solid 9)53 mm diameter
aluminium rod threaded at the "xed end (right-hand side in Figure 1) which is used
to attach the cell to the experimental rig held in place with the clamp nut. The
load-sensing cell consists of a thin-wall aluminium tube which is screwed into the
free end of the solid rod. Four SHOWA N11-FA-2-120-23 electronic resistance
strain gauges (ERSG) are bonded onto the outside of the tube wall, two primary
gauges mounted longitudinally, and two secondary gauges circumferentially to
form an active four-arm bridge. A PTFE (plastic) sleeve which slides over the cell
protects the ERSG from external e!ects. The "nal part of the assembly is a mild
steel rounded tip screwed into the free end of the tubular cell to take the impact
force.

The ERSG bridge is supplied with a stabilized 7 V supply from a conditioning
unit which also contains a high-gain stable ampli"er. The gain may be varied and,
for this particular application, has been adjusted to ]770. A high gain is necessary
since at a load of 1 N, the bridge output is of the order of only 20 lV. The load cell
was calibrated, and found to have a linear sensitivity of 21)8 mV/N over a range of
0}3)14 N.

The beam itself has dimensions 332]25]3 mm. Assuming a Young's Modulus
for mild steel of 205]109 N/m2, and a density of 8500 kg/m3, one can calculate that
the "rst and second natural frequencies of the beam are approximately 22 and
135 Hz respectively. The load cell is mounted perpendicular to the beam at a point
close to the tip, this can be seen in the photograph shown in Figure 2. The output
from the load cell was recorded using an SGA800 strain-gauge monitor, linked to
a personal computer. An initial gap was set between the beam and the load cell, and
this is referred to as the stop distance. This distance was "xed at a value which
corresponds approximately to 0)092 V from the beam displacement transducer.
The beam was forced harmonically by using a magnetic forcing transducer, which
had a "xed forcing amplitude of approximately 0)15 V. The forcing frequency can
be varied as required. For this particular con"guration of the load cell and beam
vibro-impact motion (only) occurs for forcing frequency values close to the "rst



Figure 2. Impact load cell positioned in cantilever beam-experimental apparatus.
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natural frequency in the range (of approximately) 19)0(f(24)5 Hz, where
f"1/¹ and ¹ is the period of forcing.

3. RECORDING SPIKE DATA

In this section the techniques used to record the impulse spike data from the load
cell are described. The voltage signal b(q), where q is time, from the strain-gauge
monitor was digitally sampled and recorded by using a National Instruments
LabPC#data-acquisition board and Labview 4)0 software installed on a personal
computer. The maximum sample rate R, we were able to achieve using this
con"guration was R"60 000 samples/s. Figure 3(a) shows a data sample (or time
series) recorded using this sample rate, where b(q), strain is plotted against time q.
Similar data from a mechanical experiment has been shown in reference [14]. At
this rate of sampling, recording N"5000 samples corresponds to 0)08 s of data.
The sample contains one impulse spike, the remaining data being noise generated
in the electronic circuitry used for instrumentation and from external
disturbance/vibration of the system.

3.1. SAMPLE RATE

A close up of the impulse spike is shown in Figure 3(b) (where the individual
sample values are shown as diamonds). The spike rises very quickly to a peak, and
has a more gradual decay which contains additional oscillatory components,
possibly caused by re#ected waves in the load cell and/or relaxation of the strain



Figure 3. Time series of a vibro-impact motion showing response of impact load cell b(q) as strain in
volts using a sample rate of 60 000 samples/s: (a) 5000 samples, (b) 120 sample close up of impulse
spike, individual samples shown as diamonds.

VIBRO-IMPACTING CANTILEVER BEAM 247
gauges. The number of samples S+90 recorded while the beam is in contact with
the constraint may be determined from Figure 3(b). It follows that the time of
contact q

c
is related to the sample rate by the relation q

c
"S/R. Thus, one can

choose an appropriate sample rate R from the time of constant q
c
, such that one can

achieve a desired number of samples per spike. Setting R)1/q
c
means that the
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interval between samples Dq is large enough for whole spikes to be missed.
Therefore, the minimum sample rate must be higher than this value, at least double,
and the ideal rate, signi"cantly higher, depending on the application. However,
sampling at very high sampling rates has the disadvantage that large amounts of
data are recorded for relatively short time spans. In addition for spike data, most of
the signal is noise, the spikes constitute only a small part, and therefore most of the
data recorded is actually unwanted. For example, the data shown in Figure 3,
N"5000 and S"90, and therefore approximately 4910 points or 98)2% of the
data is noise. One can overcome this problem by using thresholds, which is
discussed in section 3.2.

The sampling rate also has a signi"cant e!ect on the peak value of the impulse
spike. Because the spikes rise and fall so quickly, it is quite easy for the peak
recorded value to be some way from the actual peak value. Therefore, an attempt to
balance the need for accuracy and using excessive computing power must be made.
For data which is to be used for quantitative analysis, such as the calculation of
impact forces, we have used a sampling rate of R"50 000, for qualitative data
lower sampling rates have been used.

3.2. THRESHOLD VALUES

To avoid recording excessive quantities of unwanted data one can de"ne
a threshold value H to distinguish between unwanted data (noise) and wanted data
(impulse spikes), such that b(q)'H is recorded, and b(q)(H is disregarded. For
example, for the data shown in Figure 3, a threshold value of H"0)005 could be
chosen to distinguish between noise and spike data. This choice is arbitrary, and
can lead to the following scenarios: (1) threshold value too high, low-velocity
impacts will be missed; (2) threshold value too low, noise peaks may be mistaken for
impulse spikes.

Experimentally another problem encountered is that of zero-o!set drift, where
the strain-gauge monitor of zero o!set changes slowly during an experiment,
causing the threshold value to e!ectively change. We de"ne these problems
collectively as spike identi,cation. Other possible methods of identifying spikes are
averaging-type processes [13], or the imposition of an additional threshold value
on S, such that a S must be greater than a certain minimum threshold value before
b(q)'H constitutes a spike. However, these processes are just di!erent ways of
choosing arbitrary threshold values, so which method is used again depends on the
application. The e!ect of choosing threshold values will be discussed further in
section 5.

4. EXPERIMENTAL RESULTS

4.1. THE BEAM-STOP SYSTEM

In general, periodic impacting motion is denoted period (p, q) where p impacts
occur in q forcing periods. From previous experimental observations [4] for the
cantilever beam system, we know that periodic vibro-impact motion where one
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impact occurs in one period of the forcing, is predominant for this cantilever beam
system. We refer to such motion as period (1, 1) motion and show a typical time
series of the beam motion and the impact load-cell response, Figure 4, as voltage
output from respective transducers/gauges.

The impulse spikes can be seen to coincide with the minima of the displacement
curve (dashed line Figure 4), where impacts occur. The amplitude of these
displacement minima correspond approximately with the stop distance, 0)092 V.
Figure 4 demonstrates qualitatively the connection between the motion of the beam
and the response of the load cell. In the remainder of this work we consider the
dynamics of the system using the signal from the load cell (impact stop) alone,
although we assume that we know the forcing frequency f of the system.

We now consider a set of spike trains, or time series, recorded in the frequency
range 21)5(f(24)5. Four of these recorded time series are shown in Figure 5. All
the motions recorded here are period (1, 1) motions which can be seen from the
regular spacing of the spikes. Although other periodic and non-periodic motions can
occur for this beam [4], they occur in a very small frequency range, approximately
19)0(f(20)5, just after grazing has occurred. Impacts which occur just after
grazing are, by their nature, of low velocity, and as a result the impulse spikes
recorded with the load cell are very di$cult to distinguish from the background
noise. An example of a motion from this frequency range is discussed in section 5.

One can see from Figure 5 that, in general terms, the magnitude of the impulse
spikes increases as f increases. The problem of spike identi"cation can be
Figure 4. Time series of a vibro-impact motion showing the displacement of the beam tip (dotted
line) and response at the impact load cell (solid line).



Figure 5. Time-series data recorded from impact load cell: (a) f"21)5, (b) f"22)5, (c) f"23)1, (d)
f"24)0.
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clearly seen in the time series in Figure 5(a), which is recorded at the lowest frequency
level of 21)5 Hz. For the other time series shown in Figure 5, the impulse spikes have
greater amplitudes which makes it easier to choose suitable threshold values.

One can observe that the maximum amplitude of the spikes varies signi"cantly
throughout all the time series. This may be a result of the limitations of digital
sampling, mentioned in section 3.1, or modal behaviour of the beam, or
a combination of both. The maximum value of the spikes appears qualitatively to
rise and fall as if within some envelope frequency, similar to the beating
phenomenon. As the beam is being forced close to its "rst natural frequency,
beating may explain this behaviour, but equally it could be an aliasing type of
behaviour, the e!ect of noise, or simply a modal-beam response.

In general, the cantilever beam is an in"nite-dimensional dynamical system. Usually
however, the dynamics of such systems reduce onto a "nite-dimensional manifold
within an in"nite-dimensional phase space. Thus the "nite-dimensional dynamics of the
(beam) system can be described by a dynamical system of the form x5 q"f(xq), where
xq"x(q) is the state vector in a "nite, k-dimensional phase space x3Rk.

4.2. TIME AT IMPACT

The introduction of a threshold provides a means of experimentally determining
the time of impact and the time interval between impacts. Theoretically, one can
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assume there is a limit such that when an instantaneous impact occurs the time the
beam stays in contact with the stop tends to zero, i.e. q

c
P0. This is a theoretical

concept only, as any physical impact will be of some "nite duration. However,
assuming q

c
+0 simpli"es the mathematical modeling of the beam system

considerably.
Using the statistical properties of the data recorded from the system one can

compute the proportion of the time which the beam spends in contact with the stop:
Let B denote the region of phase space corresponding to the impact stop, and let
k be an ergodic invariant probability measure describing the evolution of the
physical system [15]. Then, by ergodicity, k (B) is the long-term proportion of the
time that the beam spends in contact with the stop. An invariant measure value
close to zero, k(B)@1 corresponds to the system spending a small amount of time
in B (i.e. at the impact stop). Thus, one can quantify the assumption made in the
study by using the instantaneous model that the physical contact time q

c
is &&short''

compared to the time between impacts [4].
Let MxqN denote the evolution of the (beam) system in phase space, so that the

voltage stream (recorded at the stop) is given by b(q),b(xq). Consider the time
series from the load cell to have a sequence of ,ring times ¹

0
, ¹

1
, ¹

2
, 2,

¹
n
corresponding to the discrete voltage signal b(q

k
) crossing the threshold H with

positive slope, such that b(q
k
)'H, b(q

k~1
)(H. Thus, B"Mx: b(x)*HN. Assume

that time is scaled such that ¹
0
"0, then ¹

n
is the total time of the signal. After

each "ring time, ¹
j
, an impulse spike occurs with duration s

j
above the threshold H,

such that b(q)'H (i.e. s
j
+q

c
for spike j). The contact time measure k

H
can be

de"ned as

k
H
"k(B)"lim

t?=

1
tP

t

t/0

sB (xq) dq+
1
¹
n
P

Tn

t/0

sB(xq) dq, (1)

where

sB (x)"G
1 if x3B,

0 if xNB.
(2)

Clearly x3B8b(x)*H, so that sB (xq)"s
*H,=)(b(q)). Thus,

k
H
+

1
¹

n
P

Tn

t/0

s
*H,=)

(b(q)) dq"
1
¹

n

n~1
+
j/0

s
j
. (3)

The smaller the k
H

value, the closer the real system is to a short duration impact.
The time of contact measure computed for the cantilever beam system for the

frequency range 21)5(f(24)0 is shown in Figure 6. At each frequency setting an
impulse spike time series was recorded (data shown in Figure 5), and k

H
computed.

The maximum standard error for these computation was less than 0)00025 for all
time series. From Figure 6, one sees that k

H
increases approximately linearly with

frequency. The linear increase in Figure 6 is due to the hardening spring behaviour
of the vibro-impact beam system [4]. A saddle node bifurcation occurs soon after
f"24 Hz, and impacting motion no longer exists. For this data all the values fall



Figure 6. The time of contact measure k
H

for the cantilever beam system.
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below approximately 0)025, which implies that for all motions the time spent in
contact with the stop is less than 2)5%. In view of the conclusion from reference [4]
that the instantaneous impact rule models the dynamics of the system adequately,
one can postulate that for systems with an contact time invariant measure
k
H
)0)025 an instantaneous impact rule is a valid approximation when modelling

the system. In addition, one concludes that systems where k
H
)0)025 have short

impacts.
Also one can note that this approximation is better for lower-frequency values,

presumably because the impact forces (discussed in section 4.4) are lower. The
relation between the beam-system dynamics xq and the voltage signal b(q) is
discussed further in section 5 where reconstructing the dynamics of the beam xq by
sing the signal b(q) is considered.

4.3. MULTIPLE IMPACT SPIKES

An interesting phenomenon observed from the data is the occurrence of multiple
impact spikes. By this we mean two or more spikes which occur very close together,
such that on the scale shown in Figure 5 they may appear as a single spike. For
period (1, 1) motion where the beam is forced at a frequency f, the time between
impacts is approximately the period of the forcing such that the interspike interval
I+1/f. As impacting motions exist only around the "rst natural frequency of the
beam, all motions are dominated by the response of the "rst mode and are hence
predominately period (1, 1). However, the occurrence of impacts induces
contributions to the response from higher modes of vibration. As a result, multiple
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spikes will occur close to the periodic time of impact, mod(q
i
)+constant, i"0, 1, 2,

3, 2, n for periodic motions. Thus, a group of individual spikes forming a multiple
spike lies within some small time perturbation e, e@1 of q

i
, q

i
$e. Other spikes

which occur in the remaining interval (q
i
#e, q

i`1
!e) are referred to a s spurious

spikes, whether caused by an impact or noise.
As an example of multiple spikes, consider the time series shown in Figure 5(d).

The forcing frequency for this test was f"24 Hz, so the period of forcing
is 1/f+0)04167 s which one expects to be approximately equal to the period of
the response and hence the interspike interval I, such that I+1/f. In Figure 7
q
c
is plotted against I for the data shown in Figure 5(d). From this "gure one can

see that there is a group of points around I+0)04167, q
c
+0)0005, corres-

ponding to the period of forcing. In addition, four points grouped together
have a much smaller I value, these correspond to the additional spikes which form
the multiple impacts. In fact there are four double spikes in this time series, only one
of which is clearly visible in Figure 5(d). For this particular example e"0)005
would be a suitable value to de"ne the multiple spikes. Note also that a greater
number of multiple spikes occur for higher forcing frequencies. This is a direct
result of the increase in higher modal activity for greater impact forces, discussed in
section 4.4.

4.4. MEASUREMENT OF IMPACT FORCE

The measurement of impact forces has important applications in engineering
systems where components are subject to impact loading. One can obtain discrete
values of the impact force, F(q), directly from the voltage signal b(q) by using
Figure 7. Contact time q
c
versus interspike interval I.



Figure 8. Computation of impact forces using the time-series data shown in Figure 5: (a) average
peak-impact force value, (b) average impulse value for each time series.
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the calibration constant b(q)/F(q)"21)8 mV/N. In Figure 8(a) the computed
average peak impact force over each of the time series shown in Figure 5. This has
been computed by recording the maximum value for each spike in the
time series, and then computing the mean value. The peak impact forces for the
recorded time series are in the range 0)2}1)0 N and appear to increase
approximately linearly with increasing frequency. As with the time of contact, the
linear increase is due to the hardening spring behaviour of the impacting beam
system [4].
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In addition to computing the peak impact force, one can compute the change in
momentum for each impact by using the impulse momentum law [16],

mv
i
(q

i~
)!mv

i
(q

i`
)"P

qi`

qi~
F(q) dt, (4)

where m is the (lumped) mass (of the beam), v
i
(q

i~
) is the velocity at the start of the

impact at time q
i~

, v
i
(q

i`
) is the velocity at the end of the contact time

q
i`

"q
i~

#q
c
, where q

c
is the duration of the contact interval. F(q), for

q
i~

(q(q
i`

, represents the force applied by the mass to the impact stop. Thus, by
computing the integral on the right-hand side of equation (4) (as a discrete
approximation) one can estimate the change in momentum during impact. This
computation has been done for the time series shown in Figure 5, and the results are
shown in Figure 8(b), where the average value of impulse for each time series is
plotted. As with peak impact force there is an approximately linear increase of
impulse with frequency value.

For impacting systems, the change in momentum during impact can be related to
the coe$cient of restitution via the coe$cient of restitution rule

v
i
(q

i`
)"!rv

i
(q

i~
), (5)

where r is the coe$cient of restitution with a value in the range r3[0, 1] depending
on the material properties of the system. Combining equations (4) and (5) one
obtains the relation

m (1#r) v
i
(q

i~
)"P

qi`

qi~
F(q) dt. (6)

This expression analytically represents the relationship between the beam and stop
because the velocity of the beam tip v

i
3x, and b(q) is a function of the impact force

F(q). Assuming that the impact law is instantaneous, as in section 4.2, implies that
F(q) is a Dirac delta function, with an amplitude related to the peak force of the
impact. This assumption can be made when considering the global dynamics of the
system, such that the contact time measure k

H
@1 as discussed in section 4.2. For

single impact analysis, for example Figure 3(b) where k
H
+1, alternative functional

forms for F(q) will be more suitable. If additional experimental measurements are
available from the system, equation (6) can be used to obtain an estimate of either
the impact velocity or coe$cient of restitution for the beam system.

5. RECONSTRUCTING DYNAMICS USING INTERSPIKE INTERVALS

One can now consider reconstructing the dynamics of the system by using
interspike intervals. The concept of reconstructing the dynamics of a system using
time-series data was "rst introduced by Takens in reference [17], and a general
review of the subject is given by Broomhead and King in reference [18]. The
application of these techniques to interspike intervals was carried out by Sauer in
reference [13]. Essentially, it is assumed that the time-series signal is generated by
an underlying dynamical system. For our beam system we assume that this
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dynamical system is deterministic with an additional noise component. As a result
the time signal can be rewritten b(q)"b) (q)#m, where bK (q) is the deterministic part
of the signal, and m corresponds to noise [18]. For this type of data, the method of
delays [17] or singular systems analysis [18] can be implemented to reconstruct the
underlying dynamics of the system. By underlying dynamics, we mean recon-
structing the attractor A, on which the trajectories of the dynamic system converge
for a particular set of parameter values.

5.1. INTERSPIKE INTERVALS

When using interspike intervals to reconstruct the dynamics of the system, one
assumes that the only information is the sequence of "ring times ¹

i
, i"0, 1, 2, 2,

n, and from this one can construct a sequence of interspike intervals I
i
, i"0, 1,

2, 2, n. The "ring times can be obtained either by integrate and ,re [13] or by
threshold crossing, as for our data. In reference [13] it was demonstrated
(numerically, without noise) that the reconstruction of the dynamics can be
achieved for a deterministic non-linear system by using the method of delays
applied to interspike intervals obtained by using the integrate and "re technique.
The "ring times for our system are obtained via the threshold crossing method
indirectly: i.e., no direct measurements of the beam system are required.

As mentioned in section 4.1, the cantilever beam is an in"nite-dimensional
dynamical system with dynamics which reduce onto a "nite-dimensional manifold
in phase space. In fact, it was concluded in reference [4] that a single-degree-
of-freedom model was su$cient to model qualitative dynamics of the system. Thus
the "nite-dimensional dynamics of the (beam) system xq, x3Rk, are related to the
voltage measurements at the load cell such that, b(q)"F(xq), where F : Rk>R, is
the measurement function [19].

Having computed the "ring times for a particular time series, one can depict
them as a spike train. Two spike trains computed from load-cell data are shown in
Figure 9. Schematic representation of a spike train computed from a load-cell signal: (a) f"22)1, (b)
f"20)1.
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Figure 9. This gives a qualitative representation of the signal which one can now use to
reconstruct the dynamics. Note also that, this type data could be recorded directly from
a system, for example by using an electrical contact, in which case the interspike
interval method would be the only way of gaining insight into the system behaviour.

5.2. DELAY RECONSTRUCTION

One can reconstruct the dynamics by using the method of delays [13, 17, 18] by
introducing a delay vector of inter spike intervals MI

i
, I

i~1
, 2, I

i~m`1
N, where m is

the embedding dimension. Castro and Sauer [20] demonstrated that the correlation
dimension d of the attractorA, can be found by using interspike intervals (integrate
and "re). In addition, the authors have postulated that estimating the dimension
when using threshold generated intervals would give the dimension of the attractor
in a (d!1)-dimensional space. This is true when recording the times trajectories
intersect with a threshold, which is qualitatively the same as taking a d!1
PoincareH section through the #ow. For impacting systems, recording the time of
impact is qualitatively the same as recording the times of intersection of the system
trajectories with a hypersurface R denoting the position of the impact stop. The
mapping R>R is now known as the impact map, following the work of Shaw and
Holmes reference [6]. Essentially one is recording these times via the load-cell
signal b(q). Thus if one reconstructs the dynamics of the system, it will be the
dynamics in R, essentially that of the impact map.

Two recorded samples of interspike interval data from the load cell are shown in
Figures 10(a) and (b) (which correspond to the spike-train data shown in Figure 9).
A clear banded structure can be seen in both these plots, corresponding to multiples
of the forcing interval, which we de"ne as IM"1/f. The correlation dimension d can
be estimated by using the method proposed by Grassberger and Procaccia in
reference [21]. Figures 10(c) and (d) show a ln}ln plot of the correlation dimension
versus the e radius used to compute it. Three sets of data are shown corresponding
to m"1 (diamonds), m"2 (crosses), m"3 (boxes). In Figure 10(a) one can see that
most of the data is concentrated at the value IM"0)0452+1/22)1. Hence in Figure
10(c), there is near-complete correlation, ln(d)"0, until e reduces below this value
(another threshold type e!ect, which occurs at !ln(e)+3)09), after which the
correlation becomes approximately constant with zero slope, before a "nal sharp
upturn. This "nal upturn is due to the band of data very close to zero, caused by
multiple spikes. The data in Figure 10(b) occurs at banded intervals of,
IM"0)0498+1/20)1, but many more bands are apparent than the data in Figure
10(a). Thus, the correlation dimension for this data, Figure 10(d), has a more
gradual transition between complete correlation and constant correlation with zero
slope. There is no "nal upturn in this data due to a much smaller proportion of the
data being close to zero. Thus for a "xed-point attratctor, one would expect d"0,
which appears to be the case for both sets of data.

The correlation dimension for the attractor A is taken to be the slope of the
linear part of the ln}ln plot. This is open to some interpretation, as can be seen in
Figures 10(e) and (f) where the slope is plotted against !ln e. From these plots one



Figure 10. Interspike interval data: (a) f"22)1 and (b) f"20)1. Estimation of correlation dimension
(c) and (e) for data in (a), (d) and (f ) for data in (b). Data sets: m"1 (diamonds); m"2 (crosses); m"3
(boxes).

258 D. J. WAGG ET AL.
can see that as the radius becomes small eP0, the correlation dimension for both
sets of data dP0. The data we have analysed comes from periodic vibro-impact
solutions of the beam, which will have "xed-point attractors in the impact map, R,
of dimension zero.

From embedding theory, the dynamics of the sequence of intervals can be
reconstructed in Rm were m*2d#1. So for our data, d+0, so m*1, and we
reconstruct the dynamics using a simple delay plot in R2.

The delay plots from the load cell data are shown in Figure 11. The data in
Figure 11(a) was recorded at f"22)1 where period (1, 1) motion exists, so that all
the intervals should be approximately equal. However, one can see that instead of



Figure 11. Experimental interspike interval delay plot: (a) f"22)1, (b) f"20)1.
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a single ("xed) point the data is distributed over a lattice of squares with size
approximately IM . Similar data has been shown in reference [22] in connection with
neural "ring events. The lattice structure is caused by a combination of disturbance
e!ects. Noise recorded as part of the signal combined with limitations in the spike
identi"cation process (section 3), results in some spikes being missed completely,
and some spurious spikes recorded. In addition, the multiple spike phenomena
discussed in section 4.3 contributes to the distribution of points in the "gure.

One can understand these e!ects by considering an undisturbed (ideal) period
one motion with all intervals exactly equal, I

i
"IM for all i. Thus with no disturbance

e!ects, there will be a single point in the delay plot at (IM , IM ). The e!ect of missing
a spike is to produce a point at (IM , 2IM ), and on the subsequent iteration at (2IM , IM ).
Similarly for p missing spikes points occur at (IM , pIM ), and (pIM , IM ). Thus, points are
re#ected in the line I

i`1
"I

i
giving rise to the lattice-type data structure. The

probability of missing k consecutive spikes decreases exponentially with k, thus less
points accumulate at intervals greater than IM . Lontin and Racicot [22] refer to the
spike-missing process as skipping.

The e!ect of spurious spikes is that an interval aIM occurs, where 0(a(1. Due
to the re#ective properties of the delay plot, this causes bands of points forming
a triangle in the "rst lattice square (0, 0), (0, IM ), (IM , IM ), (IM , 0). Multiple spikes
correspond to points close to I"0 which can be seen clearly in Figure 10(a) and (b)
(or the origin in Figure 11).

5.3. NUMERICAL SIMULATION

One can further understand these e!ects by considering a numerical simulation
of the experimental data. This can be done by simulating the motion of the beam by
integrating the equation of motion for a single-degree-of-freedom impact oscillator
[6]. First, (white) noise is added to the numerically generated signal, and the
e!ects of missing spikes and spurious spikes included by using random probability.
Using the beam equations with added noise, one can produce the delay plot in
Figure 12(a). The e!ect of missing spikes was simulated by randomly deleting "ring



Figure 12. The e!ects of the data-acquisition process on experimental results. Numerical signal; (a)
with added noise; (b) with noise and missed spikes; (c) with noise, missed and spurious spikes. (d)
experimental data. Numerical data obtained by integrating xR #0)14xR #x"0)26 cos (0)9822t) for
x(1.0, and xR (t

`
)"!0)2xR (t

~
) at x"1)0. All quantities are non-dimensional; t"141)37q, and an

over dot represents di!erentiation with respect to t.
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times using a 5% probability, the e!ect of this can be seen in Figure 12(b). Here,
apart from the main concentration seen before, there are some other, smaller ones,
evenly spaced at multiples of IM . The e!ect of spurious spikes, is demonstrated in
Figure 12(c), times between actual impacts have been added using a 1% probability.
The result in the plot is the horizontal, vertical and diagonal of bands of point dots
visible in the "gure. Finally, in Figure 12(d) the experimentally recorded data are
shown, which closely match the numerical simulation. The e!ect of multiple spikes,
can be seen as a series of points with small interspike interval values@IM , close to the
axes of the plot. Thus one can see that using the method of delays on such data
results in a highly complex plot due to a combination of noise in the system, and the
data-acquisition process.

5.4. PROBABILITY DENSITIES

An alternative method for analysing interspike data is to consider the probability
density of the interspike intervals o(I). To illustrate this the probability density for
the examples shown in Figure 11 is plotted in Figure 13. From Figure 13(a) it is



Figure 13. Probability density (histogram) of interspike interval: (a) f"22)1, (b) f"20)1.
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clear that for the data shown in Figure 11(a) the majority of the points occur around
the IM+0)0452 interval, and that the underlying dynamical motion is period (1, 1).

One can use this method to interpret period (1, q) motions; i.e., the motion is still
period one with respect to the number of impacts, but period q with respect to the
forcing period. Thus, one would expect an interspike interval of approximately q/f,
which can be recognised from the probability density plot which will be
qualitatively similar to Figure 13(a). Period (p, q) motions where p impacts occur in
q forcing periods can also be recognised. If the interval between impacts in not
equal. For example, a period two motion will have two intervals (and two impacts)
in two forcing periods, and thus two main values (peaks) of o(I). A numerical
example of such a period (2, 2) motion is shown in Figure 14(a). However, if the
intervals are equal (or close to being equal) this motion will appear as period one
(one peak o(I)) with an interval q/f.

One can now consider the motion shown in Figure 11(b). The probability density for
this data is shown in Figure 13(b). From this one can see that there are several
concentrations of data. These are separated by (approximately) the forcing interval
IM"1/f+0)0498. This motion was recorded in the frequency range where it is possible
for motions other than period (1, 1) to exist. However, as the concentrations are evenly
spaced across the probability spectrum, one can deduce that this motion is in fact
period (1, 1). Any other period (p, q) motion would produce either a series of di!ering
intervals, or a single interval at an integer multiple of the forcing interval IM .
Non-periodic motions, such as deterministic chaos, would produce a broad-band
distribution of intervals. A numerical example of the probability density of interspike
interval data from a chaotic signal is shown in Figure 14(b).



Figure 14. Numerically generated probability density (histogram) of interspike interval data.
Numerical data obtained by integrating xK#2(xR #x"F cos(ut) for x(1)0, and
xR (t#)"!rxR (t!) at x"1)0. All quantities are non-dimensional, and an overdot represents
di!erentiation with respect to t. (a) period (2, 2) motion r"0)7, f"0)05, F"0)5, a"1, u"0)838687;
(b) chaotic motion r"0)8, f"0)0, F"1)0, a"0)0, u"2)8.

262 D. J. WAGG ET AL.
It is interesting to note that the motions shown in Figure 13(a) and (b) represent
the same type of periodic motion, although they appear to be qualitatively di!erent.
The reason is the "rst spike identi"cation problem discussed in section 3.2, namely
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that the threshold value is too high, such that low-velocity impact spikes are
missed. This can be deduced from Figure 13(b) by noting that the greatest o(I)"3IM ,
indicating that the threshold has been set such that it is most likely that only every
third spike will be recorded. In fact, for a frequency of 20)1 Hz all the spikes are
di$cult to distinguish above the background noise level. Thus in this example one
is operating at the limits of these spike-identi"cation techniques, which in practical
applications is often the area of most interest.

This example clearly demonstrates the di$culties in the correct interpretation of
such spike data. For systems with low-amplitude spikes (corresponding to
low-velocity impacts for the beam system) the interspike interval technique is
limited by the need to threshold the data, although with careful analysis
information can be gained. If the spikes are well de"ned, one can characterize the
dynamics of the system by using interspike intervals and probability densities.

6. CONCLUSIONS

We have considered the experimental measurement of the impulse response of
a vibro-impact cantilever beam system. Recordings were taken using a specially
constructed impact load cell. We have discussed the issues related to sampling impulse
spike data, particularly the e!ects of sampling rate and threshold values.

We have used a measure of the time the beam stays in contact with the stop, to
demonstrate that the instantaneous coe$cient of restitution rule is a valid
approximation for systems such as the beam system, also providing a measure of
validity which may be used elsewhere. In addition we have considered the impact forces
in the system, and highlighted the possibility of a functional link between instantaneous
impact rules, and using a Dirac delta function to approximate the impact force.

In line with computational studies carried out by other authors, we have
considered reconstructing the underlying dynamics using interspike intervals from
experimental data. We have demonstrated for our data, that the dynamics can be
reconstructed using a simple one-dimensional delay plot. The e!ects of noise, and
the acquisition process have been simulated, demonstrating the limitations of
analysing this type of data.

Finally, we have considered determining periodicity (or lack of) for di!erent
motions using probability densities. We have shown how this is possible even for
data where thresholding e!ects have been signi"cant during data acquisition. In
addition, we have indicated how such thresholding e!ects can be identi"ed using
the probability-density spectrum.

This paper has presented analysis of data from an engineering system using
statistical and probabilistic methods. We envisage many future applications of
these type of methods to other engineering applications.
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